Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations
نویسندگان
چکیده
We consider one-dimensional reaction-diffusion equations for a large class of spatially periodic nonlinearities – including multistable ones – and study the asymptotic behavior of solutions with Heaviside type initial data. Our analysis reveals some new dynamics where the profile of the propagation is not characterized by a single front, but by a layer of several fronts which we call a terrace. Existence and convergence to such a terrace is proven by using an intersection number argument, without much relying on standard linear analysis. Hence, on top of the peculiar phenomenon of propagation that our work highlights, several corollaries will follow on the existence and convergence to pulsating traveling fronts even for highly degenerate nonlinearities that have not been treated before.
منابع مشابه
An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملA Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method
In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...
متن کاملPropagating terraces and the dynamics of front-like solutions of reaction-diffusion equations on R
We consider semilinear parabolic equations of the form ut = uxx + f(u), x ∈ R, t > 0, where f a C1 function. Assuming that 0 and γ > 0 are constant steady states, we investigate the large-time behavior of the front-like solutions, that is, solutions u whose initial values u(x, 0) are near γ for x ≈ −∞ and near 0 for x ≈ ∞. If the steady states 0 and γ are both stable, our main theorem shows tha...
متن کاملNon-local reaction-diffusion equations with a barrier
Non-local reaction-diffusion equations arise naturally to account for diffusions involving jumps rather than local diffusions related to Brownian motion. In ecology, long distance dispersal require such frameworks. In this work we study a one-dimensional non-local reaction-diffusion equation with bistable and monostable type reactions. The heterogeneity here from due to the presence of a barrie...
متن کامل